
1. Introduction
Deltaic wetlands are critical coastal environments that can serve as the final processing center for nutri-
ents before export to the ocean. A main research area for wetlands is their nitrate removal capacity, given 
that nitrate is considered a contaminant of concern in watersheds and the coastal zone. Nitrate loading 
in aquatic systems has been linked to eutrophication (Rabalais et al., 2009; Turner & Rabalais, 1994) and 
hypoxia (Diaz & Rosenberg,  2008; Selman et  al.,  2008; Turner et  al.,  2008) resulting in significant eco-
logical and economic losses in places such as the lower Mississippi River Basin and the Gulf of Mexi-
co. Despite insights into nitrate removal mechanisms such as denitrification, plant uptake, and burial 
(Bowden, 1987; Kadlec, 2010, 2012; Reddy et al., 1984; Rivera-Monroy et al., 2010) and their influences 

Abstract Coastal river deltas are centers of surface water nitrate processing, yet the mechanisms 
controlling spatio-temporal patterns in nutrient variability are still little understood. Nitrate fluctuations 
in these systems are controlled by complex interactions between hydrological and biogeochemical drivers, 
which act together to transport and transform inorganic nutrients. Distinguishing the contributions of 
these drivers and identifying wetland zones where nitrate processing is occurring can be difficult, yet is 
critical to make assessments of nutrient removal capacity in deltaic wetlands. To address these issues, we 
analyze relationships among regional “external” (river discharge, tides, wind) and local “internal” (water 
level, temperature, turbidity, and nitrate) variables in a deltaic wetland in coastal Louisiana by coupling 
a process connectivity framework with information theory measures. We classify variable interactions 
according to whether they work uniquely, redundantly, or synergistically to influence nitrate dynamics 
and identify timescales of interaction. We find that external drivers work together to influence nitrate 
transport. Patterns of hydrological and sediment connectivity change over time due to tidal flushing and 
discharge variation. This connectivity influences the emergence of functional zones where local nitrate 
fluctuations and temperature and water level process couplings are strong controls on nitrate variability. 
High vegetation density decreases hydrological process connectivity, even during periods of high river 
discharge, but it also increases biogeochemical process connections, due to the lengthening of the 
hydraulic residence time. Based on these results we make recommendations for monitoring nitrate in a 
wetland.

Plain Language Summary With nitrate export to oceans expected to increase in the coming 
decades, river deltas will serve as an increasingly important site at continental margins for processing 
nitrate. It will be critical to understand the drivers of nitrate variability and identify locations of enhanced 
processing. We use information theory to quantify the process connectivity among regional hydrological 
and local biogeochemical controls on nitrate in a wetland in Louisiana. We find that river discharge 
fluctuations, tidal flushing, and vegetation density affect the hydrological connectivity of the wetland 
that governs the strength of hydrological and biogeochemical influences on nitrate. This study reveals the 
mechanisms that influence nitrate transport and transformation, which may be used to design monitoring 
studies and aid coastal restoration projects.
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(e.g., land use [Hansen et al., 2018], loading rate [Mitsch et al., 2005; Mulholland et al., 2008], inflow [Lane 
et al., 1999, 2003], temperature [Kadlec, 2010], and soil composition [Vanzomeren et al., 2013]), there is a 
lack of understanding of the spatial and seasonal patterns of nitrate variability in coastal deltaic wetlands 
(Henry & Twilley, 2014; S. Li et al., 2020; Shaheen et al., 2016; Twilley et al., 2019) due to the complex inter-
actions among hydrology, geomorphology, and biogeochemistry that control nitrate processing. These dy-
namics include the heterogeneous hydrological and biogeochemical processes taking place within wetlands 
(conceptualized as local or internal wetland processes) and the exchanges taking place between wetlands 
and the surrounding landscape (i.e., regional or external processes that aid in the delivery of material into 
wetlands). Further knowledge of the processes that influence nitrate transport and transformation would 
benefit nutrient modelers and land use managers aiming to make informed decisions on monitoring and 
restoration programs in coastal wetlands. In this work, we analyze the internal and external controls on 
nitrate variability in a deltaic wetland in coastal Louisiana.

External drivers, such as river discharge, tides, and wind, can affect timescales and magnitudes of ni-
trate transport into wetlands (Caffrey & Day, 1986; Lane et al., 2011), while internal drivers, such as water 
level, sediment, temperature, and nutrients, can control reaction rates related to nitrate transformation 
(Bowden,  1987; Kadlec,  2010). Their interaction influences wetland functioning such that flow through 
wetlands may result in the formation of “functional zones” of nitrate processing (Burt & Pinay, 2005) where 
variables across space interact to alter nutrients. These functional zones may be related to spatial differenc-
es in soil elevation along the intertidal profile that determine distinct hydrogeomorphic (HGM) zones in 
wetlands associated with deltaic floodplains (Bevington & Twilley, 2018; Twilley et al., 2019). These zones 
are characterized by distinct hydroperiod, sediment organic matter content, and vegetation communities, 
with zonation and composition controlled by the elevation gradient and interspecific competition (Bev-
ington & Twilley, 2018; Carle & Sasser, 2016; Shaffer et al., 1992). Individual locations within HGM zones 
(e.g., vegetation patches) along the elevation gradient can serve as “hotspots” of nitrate influence (McClain 
et al., 2003) by locally reducing flow velocity and increasing contact time at the soil-water interface.

The complex flow patterns in deltaic wetlands that form hotspots and functional zones can be conceptu-
alized using a hydrological connectivity framework which describes the water-mediated transport of mass 
and energy among different landscape components (Bracken & Croke, 2007; Bracken et al., 2013; Tetzlaff 
et  al.,  2007). Nitrate fluctuations in these systems are governed by the information exchanged between 
system drivers and response variables, referred to as process connectivity (Passalacqua, 2017; Ruddell & 
Kumar, 2009a, 2009b). This process connectivity is influenced by the static physical links between locations 
in a wetland (referred to as structural connectivity) and the dynamic links of fluxes across space (functional 
connectivity [Lexartza-Artza & Wainwright, 2009]). Using connectivity concepts, a deltaic wetland can be 
represented as a network of interacting variables, that is, important information about processes is con-
veyed such that uncertainty in a variable is reduced. However, the dependencies among system variables 
can make it difficult to identify how variables contribute to nitrate fluctuations. For example, a variable may 
influence nitrate variability independently of any other variable (i.e., be a unique influence on nitrate), may 
act with another variable to influence nitrate (i.e., synergize to influence nitrate), or could influence nitrate 
similarly to another variable (i.e., synchronize or be redundant with that variable). To better understand the 
controls on nitrate variability across a wetland requires an approach that can classify these process connec-
tions and distinguish the locations that form hotspots and functional zones.

Quantitative measures of information theory (IT) (Shannon, 1948) provide an approach to distinguish vari-
able interactions. IT is mathematics that uses the probability density function of variables to track the flow 
of information among variables. Previous applications of IT in deltaic landscapes have quantified the influ-
ence of external drivers on delta water levels, identifying distinct timescales and magnitudes of tidal, river-
ine, and wind forcing (Sendrowski & Passalacqua, 2017). Dependencies among variables can be measured 
for any number of multivariate interactions. A particular form of IT, referred to as information partitioning, 
can be used to quantify relationships among three variables. Using this approach, we can classify rela-
tionships into unique (two variables independently influence another variable), synergistic (two variables 
jointly influence a variable), and redundant (two variables similarly influence another variable) (Goodwell 
& Kumar, 2017a, 2017b; Williams & Beer, 2010, 2011).
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Previous approaches to understand nitrate variability and wetland dynamics include the formation of sys-
tem budgets that track flows of water, solids, and solutes, and inform on the sources, residence time, and 
removal efficiencies of nutrients (Boynton et al., 2008; Hyfield et al., 2008; Lane et al., 2003). However, only 
tracking mass inflows and outflows can be very site specific and therefore hard to extrapolate across new 
areas and may also obscure or overlook important processes that occur at a different scale. We address these 
issues by forming a budget of system linkages—we track the relationships (process couplings) that influ-
ence nitrate over time and space rather than tracking mass. By mapping the network of relationships that 
compose nitrate processing, we can gain insights into dynamics that likely occur in many systems.

Our focus area for this work is Mike Island in the Wax Lake Delta (WLD) in coastal Louisiana (Figure 1). 
Using variables measured at various locations within this site coupled with observations of external driv-
ers (described in Section 2), we analyze hydrological and biogeochemical controls on nitrate fluctuations 
and distinguish the unique, synergistic, and redundant relationships of different drivers using information 
partitioning (Section 3). We discuss the mechanisms affecting wetland process connections across hydro-
geomorphic zones over time and make recommendations for monitoring nitrate in a wetland (Section 4).
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Figure 1. Study area and measurement locations. (a) Map of the Wax Lake Delta (WLD) (left) and the Atchafalaya Delta (right). Squares show the 
measurement locations of discharge, tides, and wind. Inset shows location of this system in the U.S. (b) Discharge measured at the (USGS) Calumet Gauge 
located 17 km upstream of WLD for the period encompassing nitrate measurements (October 2014–August 2015). (c) Map of Mike Island showing the location 
of the six platforms used in this study. Lines show secondary channels connecting the distributary channel and island interior. Images from the US Geological 
Survey. Inset table shows the surface elevation of the platform location (in NAVD88 [m]) and the dates of nitrate measurement for each platform.
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2. Materials and Methods
2.1. Site Description and Data Collection

WLD is a ∼100  km2 actively prograding river delta in coastal Louisiana with a median discharge of 
3,000 m3s−1 and a tidal range of 30 cm. The delta is characterized by elongated arrow-shaped islands with 
subtidal interdistributary bays surrounded by narrow higher elevation levees. The interdistributary bays 
widen and deepen in the downstream direction, and have a deeper trough down the center (Bevington 
et al., 2017; Shaw et al., 2016). The islands extend 6 km sub-aerially and another 5–10 km sub-aqueously 
(Bevington & Twilley, 2018; Shaw et al., 2013, 2016). The deltaic wetlands are composed of mineral sedi-
ments that are colonized by woody, shrub, and herbaceous fresh marsh species. Vegetation zonation and 
species composition are mainly controlled by soil elevation (Carle & Sasser, 2016); black willow trees (Sa-
lix nigra) and elephant ear (Colocasia esculenta) dominate island tops and margins, while American lotus 
(Nelumbo lutea) and submerged aquatic vegetation populate central and downstream regions of the islands 
(lower elevation). Vegetation in WLD has a seasonal signature; studies using the normalized difference 
vegetation index applied to delta imagery from 1984 to 2015 find peak and minimum biomass to occur in 
August–October and January–February, respectively (Olliver & Edmonds, 2017). Cold fronts and tropical 
storms influence vegetation and water and sediment fluxes in this region (Bevington et al., 2017; Carle & 
Sasser, 2016).

Fluxes enter Mike Island through large secondary channels and flow over subaqueous levees resulting in 
high structural and functional connectivity within the island. The distributary channel adjacent to Mike Is-
land loses up to 27% of its flow moving downstream (Hiatt & Passalacqua, 2015). Hydrological connectivity 
on the island is mediated by vegetation density (Hiatt & Passalacqua, 2017; Wright et al., 2018) and sea-
sonality, resulting in spatial variability in water exposure times (Christensen et al., 2020; Hiatt et al., 2018). 
Based on numerical experiments, the system-wide median exposure time (amount of time a water parcel 
spends in a domain of interest) is 10 h regardless of incoming river discharge or tidal conditions (Hiatt & 
Passalacqua, 2017; Hiatt et al., 2018) and field experiments have shown longer timescales on the order of 
days (Hiatt & Passalacqua, 2015).

The delta shows enhanced nitrate processing (Henry & Twilley, 2014; Hiatt et al., 2018; S. Li et al., 2020) 
making it a suitable site to measure hydrological and biogeochemical controls on surface water nitrate 
dynamics. To capture constituent variability across the island, six permanent telemetry platforms were in-
stalled during January and February 2014. After mapping the HGM zones of the delta based on field obser-
vations and vegetation surveys under different hydrological conditions (Bevington & Twilley, 2018), these 
instrument platforms were placed in two HGM zones (Intertidal [Int] and Subtidal [Sub]) where previous 
monitoring results from fixed stations on Mike Island suggested that water flow was distinct in the central 
distributary trough (Subtidal) compared to the intertidal zones along the edges of the island. Three plat-
forms (Sub1, Sub2, Sub3) were located along the longitudinal gradient from upstream to downstream in the 
interdistributary trough; two (Int1 and Int3) in the western side of Mike Island, and one in the eastern side 
(Int2; Figure 1). Additionally, platform Sub1 was deployed at the end of a secondary channel, and Int1, 2, 
and 3 in locations of denser vegetation and higher elevation (Figure 1c). Each platform was equipped with 
sensors that registered continuous measurements of water depth (pressure transducer; Campbell Scientif-
ic), temperature and conductivity (Campbell Scientific), and turbidity (OBS-500; Campbell Scientific). Sur-
face water nitrate concentrations were measured using submersible ultraviolet nitrate analyzers (SUNA V2; 
chemical free sensor, Satlantic). All sensors were installed 17.8 cm above the bed. Measurements of nitrate 
began at location Sub3 (Figure 1c) in October 2014, while the other five stations recorded data starting in 
April 2015. All data collection continued until August 2015. Data from all sensors were recorded at one-
hour intervals and stored in a CR-1000 Datalogger (Campbell Scientific) in each platform. For the nitrate 
data, hourly data consisted of an average of the previous 30s. Measurements of discharge were collected 
from the US Geological Survey (USGS) Calumet Gauge (#07381590), located 17 km upstream of WLD. Tide 
and wind data were collected from the National Oceanic and Atmospheric Administration (NOAA) Lawma 
Amerada Pass station (#8764227), located 10 km east of WLD in the Atchafalaya Delta.
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2.2. Data Processing

Prior to analysis, the discharge and wind time series were low-pass filtered to remove high frequency 
(sub-daily) fluctuations (Sendrowski & Passalacqua, 2017). The wind speed and direction were also com-
bined into a single series by multiplying the negative wind speed by the cosine of the wind direction re-
sulting in a North–South (N–S) oriented wind signal. Analysis with an East–West signal revealed similar 
dependencies to the N–S signal for this system. We combined the speed and direction as previous studies 
suggest that directional winds display stronger influences on fluxes in coastal Louisiana compared to speed 
or direction alone (Geleynse et al., 2015; C. Li et al., 2011).

If sensors became subaerial, observations of water level, turbidity, and nitrate concentration were set to 
zero, while temperature values were discarded. We corrected water depth measurements for atmospheric 
pressure and sensor height above bed; we refer to this local water depth as water level for the rest of this 
study. Turbidity observations spanned a large range of values. We performed a sensitivity analysis to de-
termine a threshold that did not remove any variable dependencies with turbidity. After this analysis, we 
chose a threshold of 900NTU; any measurements above this level were discarded. To avoid gap filling and 
indirectly adding spurious dependencies in the data (Smirnov, 2013), variables that had more than 10% of 
their data missing for the period of interest were not analyzed.

2.3. Information Theory Statistics

IT measures are quantified using the probability density function of variables. If X  is the variable or signal 
of interest, the uncertainty contained within that variable can be quantified using the Shannon entropy:

H X p x log p x
i

N

i i( ) ( ) [ ( )] 



1

2 (1)

where ix  is an outcome of X  and ( )ip x  is the probability of that outcome. The units of H(X) depend on the 
base of the logarithm; here, we use base 2, thus H(X) is measured in bits.

Information flow (from a source or multiple sources) results in the reduction in uncertainty of a target vari-
able (Ruddell & Kumar, 2009a). Interactions between two variables (a source and a target) are based on the 
joint probability distribution. The mutual information (MI) quantifies the shared information between two 
variables, X (target) and Y (source), and is shown here in terms of the Shannon entropy of X and Y, which is 
a measure of the reduction in uncertainty of X when Y is known (second expression on RHS):

( ; ) ( ) ( ) ( , ) ( ) ( )MI X Y H X H Y H X Y H X H X Y     ∣ (2)

MI is a symmetric measure and also represents a reduction in uncertainty of Y when X is known, thus the 
choice of source or target is arbitrary. However, MI can be quantified over a time lag ( ) and stated in terms 
of the probability distributions of X and Y:
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where ( , )t tp x y  is the joint probability of lagged-X and Y. These lagged MI values can be different depend-
ing on which is the source or target. Here, we identify the lag at maximum MI as the timescale of interac-
tion. MI can also be extended for three interacting variables (multiple sources (Y and Z) on a target [X]):

2
, ,

( , , )( ; , ) ( , , )
( ) ( , )x y z

p x y zMI X Y Z p x y z log
p x p y z

  (4)

( ; , ) ( ; ) ( ; ) ( ) ( , )MI X Y Z MI X Z MI X Y Z H X H X Y Z   ∣ ∣ (5)

The first expression on the RHS of Equation 5 states that the shared information that Y and Z provide to 
X can be partitioned into the information Z provides to X and the additional information Y provides to X 
when Z is known. In terms of the Shannon entropy (second expression on the RHS), the reduction in un-
certainty of X is dependent on the interaction between Y and Z. Two sources can influence X in three ways: 
(a) uniquely (U), Y and Z are independent and provide distinct information about X, (b) redundantly (R), Y 
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and Z provide the same information about X, and (c) synergistically (S), Y and Z work together to influence 
X (Goodwell & Kumar, 2017a, 2017b; Goodwell et al., 2018; Williams & Beer, 2010, 2011):

1 2( ; , ) ( ; ) ( ; ) ( ; , ) ( ; , )MI X Y Z U X Y U X Z R X Y Z S X Y Z    (6)

Thus, the reduction in uncertainty of X from interaction with Y and Z can be classified according to the 
interaction of Y and Z. This classification is referred to as partial information decomposition (Williams & 
Beer, 2010, 2011). Considering these components, MI for the individual source-target pairs can be restated 
from Equation 2 as follows:

1( ; ) ( ; ) ( ; , )MI X Y U X Y R X Y Z  (7)

2( ; ) ( ; ) ( ; , )MI X Z U X Z R X Y Z  (8)

where the information of a single source influencing a target is the sum of the unique influence from that 
source and the redundant information provided by the two sources Y and Z. In this analysis, Equations 6–8 
are used to compute U, R, and S for the interaction of X, Y, and Z in addition to another measure that takes 
into account the upper and lower bound of redundancy and the dependency between sources, called the 
rescaled redundancy. For more information on this measure, information partitioning, and an expanded 
discussion of the statistics, we refer to Goodwell and Kumar (2017a, 2017b).

As an example of the above components, we show examples of strong U, S, and R relationships for three 
signals in an idealized cross-section of a wetland complex (Figure 2). We focus on a variable measured at 
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Figure 2. Conceptual figure showing examples of strong (a) U, (b) S, and (c) R relationships in a wetland complex. 
Variable 2 is the target while 1 and 3 are sources. Each component shows example time series that result in high values 
of U, S, and R. The strongest dependencies occur at time lag  . Notation for each relationship shows the sources in the 
subscript on the left and targets on the right, that is, S1,32 is the synergistic interaction of 1 and 3 that influences 2.
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three locations, where the variable at location 2 is the target and 1 and 3 are sources. Example variables in-
clude water level, sediment concentration, or nutrient concentration. Notation for U, R, and S relationships 
follows Usourcetarget, Rsource1,source2target, and Ssource1,source2target, respectively. High U values are measured 
when the variable at 1 contains distinct information that influences location 2 (i.e., transport occurs from 
1 to 2, U12). This dependency is strongest at time lag   (Figure 2a). High U may also occur for a variable 
influencing itself (i.e., U22, similar to an autocorrelation, rounded arrow in Figure 2a). High S values are 
measured when the variables at 1 and 3 influence 2 due to transport occurring from these locations to 2 but 
there is no transport between them (S1,32, Figure 2b). High S could also result from processes at 1 and 3 
that occur together at 2, thus 1 and 3 inform on 2 beyond a linear sum of signals. Finally, high R values are 
measured when 1 and 3 are strongly synchronized due to direct transport between 1 and 3, or 1 and 3 are 
similarly influenced by the same process but are not directly connected, such that they similarly influence 
2 (Figure 2c). U, R, and S couplings therefore encompass physical flow in the system (i.e., mass movement 
across space, a result of flow paths specific to the wetland), biogeochemical “flow” (reactions occurring 
among variables at a single location), and information flow (variables have information about a process that 
informs (reduces uncertainty) on another variable that may be physically disconnected).

2.4. Experimental Design

We aim to measure (a) the overall process connectivity of Mike Island, (b) the controls on nitrate variability, 
and (c) the hotspots and functional zones that influence nitrate processing. To accomplish these goals, we 
quantify information partitioning among variables using data measured from (a) October 2014 to August 
2015 (referred to as the Oct to Aug dataset) and (b) April to August 2015 (referred to as the Apr to Aug data 
set). The second data set includes the additional nitrate measurements that began in April 2015. We use a 
sliding window to capture variability over time; both data sets are partitioned into 21-day windows with 
each window shifted by one day, totaling 306 and 131 windows for the Oct–Aug and the Apr–Aug data sets, 
respectively. A length of 21 days captures submonthly fluctuations of island constituents and also ensures 
sufficient data to create representative probability distributions using fixed interval binning for the calcula-
tion of variable dependencies (Ruddell & Kumar, 2009a).

We use the software from Goodwell and Kumar (2017a, 2017b) to calculate U, R, and S among all possible 
variable combinations for every window. Statistical significance is determined using the shuffled surrogates 
method; all time series observations in both datasets are randomly shuffled to destroy time dependencies. U, 
R, and S are then recalculated for all relationships using these random series. This procedure is done many 
times to generate a distribution of random U, R, and S values. Relationships are statistically significant at a 
95% confidence level if the original U, R, and S values exceed a certain threshold determined using a one-
tailed hypothesis test. Significant relationships are visualized using process networks (Figure 3).

While we lack specific information on the vegetation distribution of Mike Island during the study period, 
we capture its influence by exploring relationships seasonally in the first two analyses. The season begins 
when the window shifts to include the start of the season (i.e., the spring season begins when a window con-
tains data from March 20). Fall contains windows covering October–December, winter: December–March, 
spring: March–June, and summer: June–August. Based on previous analysis of the consistent patterns of 
vegetation coverage (Olliver & Edmonds, 2017), we assume that peak biomass (maximum vegetative drag) 
occurs in the late summer/fall and minimum biomass occurs in the winter of our study period.

In our first analysis, both data sets are used to explore the connectivity of Mike Island by measuring the 
spatial dependencies of water level, turbidity, and nitrate (Figure 3a). We focus on relationships within the 
same variable and compute U, R, and S information among the six locations. U information is measured be-
tween all possible location pairs (e.g., for water level [WL], we calculate the influence of Sub1-WL on Int1-, 
Int2-, Int3-, Sub1-, Sub2-, and Sub3-WL, of Int1-WL on all WL (UInt1-WLWL, etc.) resulting in 36 U relation-
ships for each variable for each window. We partition these relationships and show the proportion of self 
(e.g., USub1Sub1) and non-self (e.g., USub1Int1, USub1Int2) couplings. For R and S information, we measure 
the influence of all possible spatial couplings (e.g., for WL, we calculate the R[S] information provided by 
Sub1-and Int1-WL to all WL (R[S]Sub1,Int1-WLWL, by Sub1-and Int2-WL to all WL (R[S]Sub1,Int2-WLWL, etc.) 
resulting in 90 R and 90 S relationships for each variable for each window. We partition these couplings 
and show the proportion of R(S) relationships that result from couplings among subtidal (lower elevation 
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locations Sub1 ,2, 3, referred to as R(S)Sub), among intertidal (locations Int1, 2, 3, higher elevation, R(S)Int), 
and among mixed (e.g., locations Sub1 and Int1, Sub2 and Int3) sources. Finally we compare these U, R, and 
S values with R between each external driver and internal variable (e.g., for tides [T] and WL, we compute 
RT,WLWL) and average over all locations. Relationships for each partition are averaged over the seasons.

The first analysis focuses on the influence of location for each variable. In the second analysis, we use the 
Oct–Aug data set to measure how the different variables interact to influence Sub3-NO3 over time (Fig-
ure 3b). We compute the seasonal average and maximum U, R, and S relationships among internal variables 
(all possible combinations of temperature [Te], turbidity [Tu], and water level [WL] at the six locations) 
and among external variables (discharge, tides, wind [Q,T,W]). We also compare the magnitude of S among 
internal wetland variables to R between these variables and external drivers influencing Sub3-NO3.

For the third analysis, we focus on the influence of variable and location (Figure 3c). The April–Aug data 
set  allows us to capture spatial differences in nitrate dynamics to compare nitrate across various HGM 
zones. Primary targets of this analysis are Sub1-, Sub3-, Int1-, and Int3-NO3. Sub2-and Int2-NO3 are not 
analyzed as targets as they had significant data gaps. We compute U, R, and S for all possible location and 
variable combinations and show networks of the strongest location pairs for every variable combination 
influencing each target averaged over the 131 windows. We also measure the magnitude and timescale of U 
information provided by all variables to Sub3-NO3 from fall to summer. U is computed over a 48-h time lag 
(two diurnal tidal cycles) for each window to find the interaction timescale with Sub3-NO3. Time lags are 
not incorporated in the analysis for R and S.

3. Results
3.1. Connectivity of the Wetland and Influence of External Drivers

Overall, water level is more connected across the island than turbidity or surface water nitrate: RWL is more 
than double RTu and RNO3 for all seasons suggesting water signals are more strongly synchronized than tur-
bidity or nitrate (Figure 4a, gray bars). This result is expected as water levels in WLD are strongly influenced 
by tides (Sendrowski & Passalacqua, 2017; Swenson & Sasser, 1993) and water levels are most redundant 
with tides (boxes in Figure 4a). RWL is greater than RT,WLWL, however, suggesting that while each location 
is tidally influenced, the wetland water level signals are more similar to each other than tides likely due to 
transport between locations (Figure 4d). Previous studies of WLD using hydrodynamic model simulations 
suggest that despite the micro-tidal (30 cm) regime in WLD, tides maintain hourly exchange between chan-
nels and the wetland along the delta front, even during the spring high river discharge season. This dynamic 
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Figure 3. Process networks depicting the three analyses of this work. Line origins are the sources and arrows point 
toward the target variable. U (dashed lines), R, and S (solid lines) are measured (a) among the locations of the same 
variable (water level [WL], turbidity [Tu], temperature [Te], and nitrate [N]) to measure connectivity across space, (b) 
among multiple variables to measure their influence on Sub3-NO3, and (c) among multiple variables and locations 
to find the influences on Int1, Int3, Sub1, and Sub3-NO3. Interactions with external drivers (wind [W], tides [T], and 
discharge [Q]) are also measured for the first two analyses, and (a) and (b) are also seasonal. Lines in the networks 
show example relationships.
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forcing results in low water age (the time water from the main river channel spends in the delta wetland) 
in WLD (Christensen et al., 2020). Similarly, another study in WLD shows strong correlation in water levels 
between upstream and downstream locations in Mike Island (Elliton et al., 2020). The surface roughness of 
the wetland (a result of bed roughness or vegetative drag) affects the water level signal such that it further 
differentiates the water level from external drivers (i.e., decreases RExt.Driver,WLWL).

Seasonal trends in RWL and UWL are influenced by patterns in hydrological connectivity controlled by veg-
etation coverage and external forcing. Peak hydrological disconnectivity of the wetland occurs during the 
winter when incoming river discharge is low and many intertidal locations along Mike Island become sub-
aerial for a portion of the window (Figure 5a). Despite this disconnectivity, average RWL (including RInt-WL
WL) is consistent from winter to spring likely due to tidal and discharge forcing in winter and spring, respec-
tively. Maximum RWL increases as the spring flood pulse occurs (Figure 1b). The decrease in RWL in summer 
coincides with an increase in UWL, especially among self-couplings (blue bars in Figure  4a). This trend 
suggests water level variations are more locally controlled during summer, which we attribute to increasing 
vegetation coverage that presents a physical barrier to flow, affecting process connectivity of the wetland. 
Sendrowski and Passalacqua (2017) found similar results for a study on multiple islands in WLD where 
wind-driven process connections persisted as hydrological connectivity was maintained, but connections 
were diminished as vegetation coverage increased. Similarly, experimental model simulations in WLD indi-
cate that the presence of wetland vegetation (modeled as increased bed roughness) decreases hydrological 
connectivity of the delta by preventing water flow into the floodplain (Hiatt & Passalacqua, 2017).

Turbidity fluctuations are influenced by river discharge and the local surface. RTu is highest in winter and 
spring (Figure 4b), as discharge increases synchronization among turbidity signals. RQ,TuTu (boxes in Fig-
ure 4b) is greater than RTu for all seasons suggesting that river discharge, rather than the local sediment 
transport processes, drives similarity in the turbidity signal across all locations. This finding is supported 
by UTu information; UTu is stronger for self-couplings (Figure  4b) further suggesting a lack of sediment 
transport between locations. Local conditions, such as wetland surface roughness, may shorten transport 
distances compared to water and cause each site to exhibit a memory effect (Figure 4d). However, in winter, 
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Figure 4. The unique (U), synergistic (S), and redundant (R) information, measured in bits, among (a) water level, (b) turbidity, and (c) nitrate over the four 
seasons. Overall average U, R, and S relationships are shown in proportion to each other (separated by dashed white lines) and then further partitioned into 
self and non-self couplings for U information (blue bars, top), and into subtidal, intertidal, and mixed sources for S (red bars, middle) and R (white/gray bars, 
bottom) information. Total information is normalized for each variable to directly compare water level, turbidity, and nitrate. The letters are the average R 
between the variable and the strongest external driver (T is tide, Q is discharge, W is wind) for that season. For nitrate relationships in (c), the fall and winter 
data are from the Oct to Aug data set (where only Sub3-NO3 data are available), while spring and summer show the Apr–Aug data set where all NO3 data are 
available. (d) Conceptual figure showing the strongest relationships from (a) to (c). Dashed lines are U relationships and dotted lines are R relationships. Blue 
lines refer to water level relationships, orange refers to turbidity, and red refers to nitrate.
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when vegetation dies off, sediment transport distances may lengthen. Strong turbidity fluctuations observed 
during winter tidal inundation periods provide some evidence of this phenomenon (Figure 5c).

Surface nitrate dynamics are similar to turbidity results. RQ,NO3NO3 (boxes in Figure 4c) exceeds RNO3 sug-
gesting nitrate synchronization is dominated by external drivers. UNO3 is the strongest influence on nitrate 
for all seasons and is strongest for self-couplings. A recent study shows that distinct differences in sediment 
organic matter content and hydroperiod across HGM and chronosequence zones in Mike Island along with 
seasonality (i.e., temperature) are key factors controlling benthic nutrient fluxes and nitrate removal rates 
of deltaic wetlands in this region (S. Li et al., 2020). Consequently, nitrate dynamics are highly localized, 
as indicated by our findings, which also suggest that nitrate dynamics at each site exhibit a strong memory 
effect. This result is supported by the stronger SNO3 and UNO3 compared to RNO3 measured in spring (i.e., little 
synchronization among signals, Figure 4c) and the high variation in nitrate measured at different locations 
along Mike Island (Figure 5b) reflecting spatial variation in wetland connectivity, vegetation density, and 
nutrient processing that results in differences in nitrate transport and removal. The decrease in nitrate syn-
ergy in summer could be due to greater disconnectivity of the wetland, but more likely is a result of data 
gaps toward the end of the nitrate data set (Figure 5b).

3.2. Controls on Nitrate Variability Through Time

Here, we explore how other variables influence Sub3-NO3 over time. As Sub3 is an area of higher hydrolog-
ical connectivity, we expect strong connections between nitrate and the other variables. We focus on U and 
S among variables as the relationships are weakly redundant. Internal and external variables more strongly 
influence Sub3-NO3 synergistically than uniquely. While USub3-NO3Sub3-NO3 is still the strongest influence 
on Sub3-NO3, SQTWSub3-NO3 is also a strong influence (Figure 6), as Sub3 is structurally connected to the 
adjacent distributary channel and interdistributary bay, resulting in stronger process connectivity to exter-
nal drivers. External drivers are more synergistic than redundant as they each influence delta variables over 
different timescales and magnitudes (Sendrowski & Passalacqua, 2017). Other strong Sub3-NO3 influences 
include SWL,TeSub3-NO3, a hydrological and biogeochemical coupling, and STeSub3-NO3 and STe,TuSub3-NO3, 
biogeochemical couplings. The higher S among temperatures and between temperature and turbidity com-
pared to their R across the wetland reflect their influence on processing rates of Sub3-NO3, though the 
mechanisms of these process connections likely change over the seasons. We expected to capture less or 
weaker process connections in winter as we observe that interior locations become subaerial for 20–70% of 
windows (i.e., hydrological disconnectivity is high, Figure 5a) and many couplings influencing Sub3-NO3 
weaken from fall to winter (first two networks in Figure 6). Yet some couplings strengthen in winter such as 
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Figure 5. (a) The fraction of time each sensor was not inundated for every window of analysis for the Oct–Aug data 
set. (b) Observations of nitrate collected at the six locations for the Apr–Aug data set. The nitrate signal was low-pass 
filtered to remove fluctuations <30 h. Nitrate is plotted here as a fraction of filtered Sub3-Nitrate. (c) Time series 
observations of water level (blue) and turbidity (orange) at location Int1 for the period 01/18–02/01 2015.
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maximum STe,TuSub3-NO3 likely due to external driver influence as maximum RQTW,TuSub3-NO3 and average 
RQTW,TeSub3-NO3 exceed STe,TuSub3-NO3 (Figure 7). We hypothesize that nitrate variability at this location is 
less likely driven by removal (denitrification) given this dependency with external drivers and the lower 
temperatures in winter that inhibit benthic fluxes (S. Li et al., 2020).

While external variables drive process connections in winter and spring, we propose vegetation drives them 
in summer. Spring floods increase hydrological connectivity of the wetland coinciding with strengthened 
process couplings affecting nitrate (third network in Figure 6). The 2015 spring flood lasted several months 
into the summer, and yet despite continuous inundation (Figure  5a), process couplings influencing ni-
trate weaken in summer, and many variables experience strengthened self-uniqueness, which suggests 
local-scale controls on variable fluctuations (Figures 4 and 6). Previous studies in WLD found that vege-
tation can promote hydrological disconnectivity and increasingly confine flow into channels (Christensen 
et al., 2020; Hiatt & Passalacqua, 2017) which may decrease the occurrence of process connections between 
locations (Sendrowski & Passalacqua, 2017). However, the presence of vegetation also increases the hydrau-
lic residence time, which may increase process couplings at a single location or between variables depend-
ent on the longer contact time. The average strength of couplings weakens during the growing season in 
agreement with previous research, while maximum information increases for most wetland couplings (and 
R with external drivers decreases, Figure 7), suggesting longer hydraulic residence times could be increas-
ing process connections at certain locations or between certain variables and we explore this further in the 
next section.
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Figure 6. Process networks showing the (a) average and (b) maximum unique and synergistic information relationships that influence Sub3-Nitrate (N in the 
figure) over the four seasons. Dashed lines show unique information from each variable. Solid lines are the synergistic information provided by each individual 
internal variable, each internal variable coupling (e.g., water level [WL] and temperature [Te], turbidity [Tu] and water level), and among external drivers 
(T = tide, W = wind, Q = discharge). Line weights reflect the strength of the relationship. The relationships in winter, spring, and summer are colored for when 
they increase (red color), decrease (blue), or do not change (black) from the previous season.
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3.3. Hotspots and Functional Zones of Nitrate Processing

Given the spatial dependence of nitrate removal related to organic matter content, hydroperiod, and tem-
perature, we now measure the influence of different variables and HGM zones on nitrate. We first compute 

the unique influence of all variables on Sub3-NO3 and measure their in-
teraction timescale; this timescale represents an information flow times-
cale, first quantified in WLD and connected to water transport timescales 
by Sendrowski and Passalacqua (2017). The timescales for UExternalDrivers
WL in this analysis (not shown) are similar to their results, suggesting that 
the lag values provide a similar insight into variable dependency. Unique 
influence from the other locations is comparable to the influence from 
Sub3 variables (Figure 8), however, the timescales of these relationships 
are different across space and change over the seasons. For example, the 
magnitude of UTeSub3-NO3 is similar for all locations and USub1-WLSub3-

NO3 is similar to USub3-WLSub3-NO3, but the timescale of USub3-TeSub3-NO3 
lengthens from winter to summer (Figure 8b and 8d) as does UWLSub3-

NO3 for most locations. This shift coincides with strengthened S among 
some internal variables influencing Sub3-NO3 (Figure 6). The higher UWL

Sub3-NO3 timescales we measure suggest increased vegetation coverage 
is lengthening the hydraulic residence time and causing an increase in 
process connection strength. The increased contact time leads to stronger 
interactions between wetland variables that biogeochemically influence 
nitrate (Kadlec,  2010) such that we measure increased SWL,TeSub3-NO3. 
Numerical modeling results of WLD show that, while increased veg-
etation density decreases overall hydrological connectivity, it increases 
water exposure time within the wetlands in the delta (Hiatt et al., 2018). 
Previous work also shows nitrate removal rates in Mike Island are high-
er in summer than spring likely due to a combination of higher input 
of riverine nitrate and higher ambient temperature during the summer, 
suggesting that temperature and turbidity couplings are driven by local 
wetland processes such as the interaction of warmer temperatures with 
benthic organisms and organic matter content in soils (influenced by tur-
bidity) that act on nitrate (S. Li et al., 2020).

Viewing the spatial extent of U and S relationships influencing Sub1, 
Int1, Int3, and Sub3-NO3, we find the specific hotspots and zones that 
emerge to influence NO3 across locations. Interestingly, while we observe 
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Figure 7. Average R and S information influencing Sub3-NO3 over the four seasons. The first three bars (in shades of 
blue) for each season represent average S among water level, temperature, and turbidity, while the next three bars (in 
shades of gray) are the average R between external drivers (averaged for tides, wind, and discharge) and water level, 
temperature, and turbidity, respectively. Lines on bars are the maximum and minimum values of the relationship. Stars 
are the average R for the wetland coupling.

Figure 8. Average unique information provided to Sub3-NO3 (N) 
from water level, turbidity, and temperature at all locations along with 
discharge (Q), tides (T), and wind (W) for (a) fall, (b) winter, (c) spring, 
and (d) summer. Lines on bars are the maximum and minimum values 
of the relationship. Colors are the timescale of interaction found at the 
lag of maximum mutual information for each variable on Sub3-NO3. 
The horizontal axis refer to the location for water level, turbidity, and 
temperature.
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lengthened USub3-WLSub3-NO3 and USub3-TeSub3-NO3 timescales from winter to summer, we measure shorten-
ing interaction timescales for USub3-TuSub3-NO3 and UInt2-TeSub3-NO3 and the strongest sources of turbidity 
and temperature information generally emerge from locations Sub3 and Int2, respectively (Figure 9). Sub1-
NO3 is influenced by five S couplings from locations Int1 and Sub2, where Sub2-Te and Sub2-Tu interact 
with Int1-WL and Int1-NO3 to inform on fluctuations at Sub1 (Figure 9a). Int3-NO3 is influenced by rela-
tionships between locations Int1 and Sub3 and Int2 and Sub3. Less influence is measured from location 
Sub2, despite the proximity of Int3 and Sub2. The zones that emerge may represent physical flow paths that 
develop in between vegetation patches as overall hydrological connectivity of the wetland decreases (i.e., 
flow is occurring from Int1 and Sub2 to Sub1 but not between Int3 and Sub2 due to vegetative barriers) 
or they may represent “information areas” that contain processing information that reduces uncertainty 
in variable fluctuations. For example, Int2-Te more strongly synergizes with other variables to influence 
NO3 compared to temperature at the location of interest. The features at Int2 in the intertidal zone (such as 
sediment organic matter content, average summer temperature, and hydroperiod) may result in faster pro-
cessing rates of NO3 at Int2 = (and Int2 has the lowest nitrate concentrations of all areas studied suggesting 
nitrate removal is occurring [Figure 5]) and this informs on future processing at the other locations; thus 
location Int2 is a hotspot of temperature information.

Nitrate is not generally influenced by variables within the same HGM zone and the strongest couplings are 
measured across HGM zones. Given the complexity of wetland structure and biogeochemical processing 
in WLD, it is likely that the wetland is a mix of physical preferential flow paths (flow moving across HGM 
zones) and information areas (information within HGM zones) that interact to influence NO3 dynamics. 
The functional zones that we measure suggest that flow and information flow in this system are moving 
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Figure 9. Process networks showing the sources of the maximum unique and synergistic couplings of all internal variables influencing (a) Sub1, (b) Int1, (c) 
Int3, and (d) Sub3-Nitrate. Unique information is shown as a dashed line and synergistic relationships are solid lines. The line color distinguishes the variables 
of water level (blue), temperature (white), turbidity (yellow), and nitrate (red). Loops or curved lines close to the target indicate that the location influences 
itself. For example, the strongest source of nitrate unique information to Sub3-Nitrate is itself (red loop in [d]) and the maximum synergy of turbidity and water 
level on Sub3-Nitrate is between Sub3-Turbidity (yellow solid line) and Int3-Water Level (blue line). Images of Mike Island copyright 2017 Digital Globe, Inc.
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upstream in this period. Location Sub1 variables are not strong sources of information despite their loca-
tion in the subtidal zone at the end of a secondary channel. Nitrate is most influenced by variables located 
downstream of it. The emergence of dense vegetation patches across the wetland may prevent downstream 
movement of flow, while tides, a persistent forcing in this system, would assist in delivering material up-is-
land. This result explains how location Sub3 is a hotspot of influence as it likely maintains physical flow 
connections and may serve as an information area as well.

4. Discussion
4.1. Mechanisms Maintaining Process Connectivity in Deltaic Wetlands

Throughout the period of study, Mike Island experienced variation in vegetation patterns, seasonality, and 
external driver forcings. These mechanisms affected the magnitude and timing of variable fluctuations, 
which result in differences in process connectivity measured across the wetland. In winter and spring, wet-
land variables that influence Sub3-NO3 were highly synchronized with external drivers, including tempera-
ture. These drivers acted together to deliver material in the wetland, which had lower surface roughness due 
to a lack of vegetation (Figure 10a). Water levels were also highly redundant in this time, suggesting trans-
port was occurring across the wetland. These results suggest that nitrate fluctuations were transport-domi-
nated during this period, captured as stronger hydrological controls on nitrate compared to biogeochemical 
controls. A caveat here is that we only had nitrate measurements for one location from fall to spring. The 
low redundancy among nitrate signals in the April–Aug data set (Figure 4c) suggests that findings for one 
location may not be extrapolated across space, thus future work should focus on capturing these dynamics 
at multiple locations in WLD.

In contrast, in summer we measured strengthened relationships among wetland variables as their redun-
dancy with external drivers decreased. Variable fluctuations also showed more local controls, as surface 
roughness of the wetland and hydraulic residence time increased due to vegetation emergence (Figure 10b). 
The strongest relationships were between temperature and other wetland variables and these patterns were 
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Figure 10. Conceptual figures showing the overall difference in process connections between (a) winter and spring and (b) summer. Dashed lines are U 
relationships, dotted lines are R relationships, and solid lines are S relationships, with variables labeled in the figure. Q = discharge, T = tide, Te = temperature, 
Tu = turbidity, W = wind, WL = water level.
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consistent when analyzed for nitrate at multiple locations, suggesting that nitrate fluctuations are transfor-
mation-dominated during this time, captured as stronger biogeochemical process connections despite high 
hydrological disconnectivity of the wetland.

While the timescales and individual locations that interact to influence nitrate represent site-specific 
knowledge based on the physical emplacement of sensors in the wetland, the shifts we measure in process 
connectivity over time are a transition that likely occurs in many systems. The timing and magnitude of 
this transition are strongly controlled by external drivers and the extent and density of vegetation coverage. 
Previous work shows that vegetation patterns can significantly influence flow and sediment in wetlands 
(Ma et al., 2018; Piliouras & Kim, 2019; Piliouras et al., 2017; Wright et al., 2018) and are linked to insights 
into nitrate removal (Knights et al., 2020), making vegetation a driving mechanism on transitions in hydro-
logical and biogeochemical process connections.

Older intertidal HGM zones with high sediment organic matter content are the most efficient sites for 
nitrate removal. Pevious work indicates that the annual nitrate removal capacity (via denitrification) of 
deltaic wetlands in WLD accounts for 10–27% of the total nitrate load to WLD, with over 90% of the annu-
al N removal occurring during warmer temperatures (>17◦C) and higher surface nitrate concentrations. 
This is particularly significant given that WLD is a young prograding coastal deltaic floodplain where the 
capacity of N removal increases by 0.2–2% per year, prior to riverine nitrate export to adjacent coastal wa-
ters (S. Li et al., 2020). Future studies should look into the transitions in process connectivity more closely 
and identify conditions that optimize nutrient removal, including measuring process connections within 
and across HGM zones, especially in older versus younger portions of wetlands where organic matter and 
nutrient processing can show strong spatial differences (Bevington & Twilley, 2018; Henry & Twilley, 2014; 
S. Li et al., 2020). The inclusion of other variables such as sediment organic matter content, phosphorus, 
dissolved oxygen, and dissolved organic carbon in an analysis such as the one performed here would also 
provide insight into wetland nutrient processing. The approach used in this study and the timescales and 
locations uncovered can be used to compare numerical modeling results; the differences between field and 
modeled process connections can provide insight into model development related to nutrient processing 
(Sendrowski et al., 2018).

4.2. Monitoring Nitrate in a Wetland

We find that the strongest synergistic couplings influencing nitrate tend to occur between variables at an 
intertidal and subtidal location. This spatial coupling may be a feature of wetland processing dynamics; it is 
not simply the development of hydrogeomorphic zones, but the exchange of information across these zones 
that drives nitrate processing in a wetland. The sensors in our study were strategically placed to measure 
variables in these zones; our results show that location matters when understanding nitrate processing con-
trols and supports the functional descriptions of wetlands based on hydrogeomorphology (Brinson, 1993). 
The placement of sensors for nutrient monitoring is thus critical to ensure that processes of interest are cap-
tured. Rather than placing sensors for a measure of mass inflows and outflows, we propose placing sensors 
throughout and within different wetland HGM areas to capture process connections, that is, create a budget 
of the linkages in the system (Dietrich & Dunne, 1978) as was done in this study. This includes sensor place-
ment in areas of known high hydrological connectivity to capture flow paths, and potential areas of lower 
physical connectivity to capture information areas that may inform on nutrient processing.

4.2.1. Temporal Considerations for Monitoring

This study is unique in that we gathered continuous one-hour measurements of in-situ nitrate and other 
wetland variables over several months to detect changes in process connections over time. The strongest 
control was USub3-NO3Sub3-NO3, suggesting that local factors affect the nitrate signal. Variables that may have 
greater influence on nitrate include organic matter content or temperature at an unmeasured location. An-
other alternative is that variable interactions occur over a different timescale than was measured here using 
21-day windows. This window length may be long enough that some signal interactions are “smoothed 
out” and the influence of the landscape dominates. To examine this effect, we re-computed the unique in-
formation provided to Sub3-nitrate using a 10-day window with a kernel density estimation (KDE) method 
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(Goodwell & Kumar, 2017b). This method fits a smoothing function to the data and requires less observa-
tions to accurately represent the data as a probability density function (Goodwell & Kumar, 2017a, 2017b).

We calculated the difference between (a) the unique information provided to Sub3-nitrate over 21-day and 
10-day windows and (b) their interaction timescale (Figure 11). For all seasons, average USub3-NO3Sub3-NO3 
found using 21-day windows exceeds the 10-day window value, suggesting that over 10 days nitrate var-
iability may be better explained by other processes beyond previous local fluctuations. One such process 
includes influence of water level, which shows higher UWLSub3-NO3 using 10-day windows, especially in 
winter, when tidal flushing is occurring over diurnal timescales. External drivers are more persistent forces 
such that UEx.DriverSub3-NO3 is higher in the 21-day windows (i.e., the smaller fluctuations in tide and wind 
signals are smoothed out and longer-term patterns, such as the spring-neap tidal cycle, dominate unique 
external influence on nitrate). When we consider maximum U information, UTuSub3-NO3 and USub3-NO3
Sub3-NO3 in summer show stronger influence over 10-day windows (circles in Figure 11) suggesting some 
locations act over shorter timescales. Despite these differences, the timescales of interaction for most rela-
tionships are similar between the two window lengths, suggesting that this timescale is less influenced by 
window size, an effect which Sendrowski and Passalacqua (2017) saw in their work on window length and 
mutual information timescales.

Even though the timestep was not shortened, the smaller window results lead to our suggestion that meas-
urement of sub-hourly nitrate fluctuations should be considered. Collecting data over timesteps of 15 or 
30 min would allow for a similar analysis to this study over shorter windows and better capture transport 
across a deltaic island. Transport between locations in Mike Island likely occurred over short time periods 
due to the small area of the wetland and the high degree of hydrological connectivity.

5. Conclusions
This analysis thoroughly examines the interactions governing nitrate variability in a wetland. Our results 
reveal mechanisms that likely influence nitrate in many systems and highlight wetland processing charac-
teristics specific to Mike Island. Nitrate controls were analyzed by classifying variable interactions among 
internal wetland variables and external hydrological drivers using IT statistics. Variables measured at dif-
ferent locations were distinguished by whether they uniquely, synergistically, or redundantly influenced 
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Figure 11. Difference between average (bars) and maximum (circles) unique information found using 21-day windows and 10-day windows for variables 
influencing Sub3-nitrate over all seasons (seasons shown next to each other in the order fall, winter, spring, summer). Colors of bars are the difference 
in timescales between the two methods. The horizontal axis refers to the location for water level, turbidity, and temperature. N refers to Sub3-Nitrate, 
Q = discharge, T = tide, W = wind.
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nitrate variability. The distinct influence of wetland variables was elucidated, along with knowledge of 
relevant timescales of information flow. The wetland surface roughness, dynamics of external hydrological 
drivers, seasonality of vegetation, and location in the wetland based on HGM zone are major drivers of 
nitrate transport and transformation. The results of this work provide a framework for analyzing system 
linkages that capture the processes of interest that can be used in monitoring and numerical modeling 
studies related to nutrient processing. We draw the following conclusions:

1.  Process connectivity among variables is maintained in winter due to redundancy with external drivers 
and is maintained in summer due to increased vegetation density that lengthens the hydraulic residence 
time resulting in increased synergy among biogeochemical variables.

2.  Water is more connected across the wetland than turbidity or nitrate, suggesting shorter sediment trans-
port distances and local processing of nitrate fluctuations.

3.  Functional zones that influence nitrate form across hydrogeomorphic zones, while temperature hotspots 
of nitrate influence form in locations with enhanced nitrate processing. Turbidity hotspots form in loca-
tions with higher structural connection to the adjacent distributary channel.

4.  Specific process couplings that influence nitrate include synergy between temperature and water, among 
external drivers, and unique local nitrate information.

Data Availability Statement
The discharge data are available at the USGS website, https://waterdata.usgs.gov/nwis/uv?site_
no=07381590. The wind and tide data can be downloaded from the NOAA Tides and Currents site for the 
Lawma-Amerada pass station, https://tidesandcurrents.noaa.gov/waterlevels.html?id=8764227. The infor-
mation partitioning software can be accessed at https://zenodo.org/badge/latestdoi/73230010. The station 
data are available through the following: Christensen et al. (2021a, 2021b, 2021c).
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